A polynomial-time algorithm for a class of minimum concave cost flow problems
نویسندگان
چکیده
We study the minimum concave cost flow problem over a two-dimensional grid network (CFG), where one dimension represents time (1 ≤ t ≤ T ) and the other dimension represents echelons (1 ≤ l ≤ L). The concave function over each arc is given by a value oracle. We give a polynomial-time algorithm for finding the optimal solution when the network has a fixed number of echelons and all sources lie at one echelon. We also give an O(T )-time algorithm for finding the optimal solution in a capacitated grid network with two echelons and constant capacity on certain arcs. Both algorithms generalize the complexity results for many variants of the lot-sizing problem in terms of cost functions, number of echelons, intermediate demands, backlogging, and production and inventory capacities. We also show that CFG is NP-hard when the number of echelons is an input parameter or upward arcs are present. Our results resolve many of the complexity issues for CFG.
منابع مشابه
The Minimum Universal Cost Flow in an Infeasible Flow Network
In this paper the concept of the Minimum Universal Cost Flow (MUCF) for an infeasible flow network is introduced. A new mathematical model in which the objective function includes the total costs of changing arc capacities and sending flow is built and analyzed. A polynomial time algorithm is presented to find the MUCF.
متن کاملAn Efficient Extension of Network Simplex Algorithm
In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the stand...
متن کاملMASSACHUSETTS INSTITUTE OF TECHNOLOGY by Separable Concave Optimization Approximately Equals Piecewise - Linear Optimization OR 390 - 12
We study the problem of minimizing a nonnegative separable concave function over a compact feasible set. We approximate this problem to within a factor of 1 + 2 by a piecewise-linear minimization problem over the same feasible set. Our main result is that when the feasible set is a polyhedron, the number of resulting pieces is polynomial in the input size of the polyhedron and linear in 1/2. Fo...
متن کاملScheduling in Container Terminals using Network Simplex Algorithm
In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by the Network Simplex Algorithm (NSA). The algorithm is based on graph model and their performances are at least 100 times faster than traditional si...
متن کاملSeparable Concave Optimization Approximately Equals Piecewise Linear Optimization
We study the problem of minimizing a nonnegative separable concave function over a compact feasible set. We approximate this problem to within a factor of 1 + 2 by a piecewise-linear minimization problem over the same feasible set. Our main result is that when the feasible set is a polyhedron, the number of resulting pieces is polynomial in the input size of the polyhedron and linear in 1/2. Fo...
متن کامل